A Sensor for Laser Ultrasonic Measurement of Elastic Properties during Manufacture
نویسندگان
چکیده
An automated sensor has been developed for use in paper manufacturing and for demonstration on a full scale paper machine during commercial operation. This laser ultrasonic sensor provides non-contact and on-line measurement of the elastic properties of paper and paperboard. It was tested on a pilot web handler at web speeds up to 12.7 m/s. Measurements of flexural rigidity and out-of-plane shear rigidity were made by fitting the frequency dependence of the phase velocity of Ao Lamb waves mode to a model equation. Ultrasonic waves were generated in the paper with a pulsed Nd:YAG laser and detected with a Mach-Zehnder interferometer coupled with a scanning mirror/timing system to compensate for paper motion. On-line measurements agreed very well with off-line laboratory measurements. Introduction In Laser Ultrasonics (LU), also known as laser-based ultrasonics, acoustic waves can be generated with a pulsed laser in a material to determine one or more of its physical properties. These acoustic waves are also often monitored with a laser-based detector, usually a form of interferometer, without physical contact to the sample (1). In this work, plate waves (also called Lamb waves) (2) are detected several millimeters from the generation point as they propagate along the sheet. A diagram of this system is shown in Figure 1. Laser ultrasonics has been applied in recent years to measurement of mechanical properties of paper in the laboratory (3,4). Further laboratory demonstrations of LU on moving paper demonstrated the possibility for routine measurement of these properties during manufacture, and for feedback control of the papermaking process based on these measurements (5,6). Further developments in signal processing and the results of a miniaturized and industrialized scanning LU sensor on moving paper are discussed in this paper. Figure 1. System for laser ultrasonic analysis of paper. Background LU signal energy in paper goes predominantly into the zero order anti-symmetric (Ao) mode plate wave (3). The Ao mode is characterized by relatively large (hundreds of nanometers) out-of plane displacements, which are easily detected with commercially available laser vibrometers. In this work, a Fourier transform, ‘phase unwrapping’ computational method was used to calculate two elastic properties from a phase velocity versus frequency dispersion curve that was constructed from two Ao wave signals (7). The properties are flexural rigidity (D) and out-of-plane Shear Rigidity, SR (for homogeneous material shear rigidity is equal to shear modulus times caliper). Flexural rigidity differs slightly (for paper it is typically about 9% larger) from Bending Stiffness (BS) through a term that depends on the in-plane Poisson’s ratios (νxy and νyx):
منابع مشابه
Material Property Measurement of Metallic Parts Using the INEEL Laser Ultrasonic Camera
Ultrasonic waves form a useful nondestructive evaluation (NDE) probe for determining physical, microstructural, and mechanical properties of materials and parts. Noncontacting laser ultrasonic methods are desired for remote measurements and on-line manufacture process monitoring. Researchers at the Idaho National Engineering & Environmental Laboratory (INEEL) have developed a versatile new meth...
متن کاملElastic characterization of porous bone by ultrasonic method through Lamb waves
The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...
متن کاملUncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملDesign and Application of a Photoacoustic Sensor for Monitoring the Laser Generated Stress Waves in Optical Fiber
Measurement of stress transients generated by a 400ns pulsed HF laser in an infrared fluoride glass fiber has been made using fast time – response piezoelectric film transducer. Acoustic signals up to 12 mV with frequencies ranging in megahertz generated by 21 mJ laser pulse when passed through the fiber axis in the linear region. It is shown that useful information such as onset of non - linea...
متن کاملTip sensor probe for changing refractive index measurement in small volumes
In this paper, a tapered tip optical fiber probe sensor for localized refractive index (RI) measurements is presented. This sensor’s interaction with analytes is confined to a few micro-meters which makes it a promising candidate for in-vivo or even intra-cellular RI monitoring. This tapered tip was simply fabricated by etching optical fiber with hydrofluoric acid to a conic shape with a sub-m...
متن کامل